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Abstract. Let A be the edge-node incidence matrix of a bipartite graph
G = (U,V ; E), I be a subset of the nodes of G, and b be a vector such
that 2b is integral. We consider the following mixed-integer set:

X(G, b, I) = {x : Ax ≥ b, x ≥ 0, xi integer for all i ∈ I}.

We characterize conv(X(G, b, I)) in its original space. That is, we de-
scribe a matrix (C,d) such that conv(X(G, b, I)) = {x : Cx ≥ d}. This
is accomplished by computing the projection onto the space of the x-
variables of an extended formulation, given in [1], for conv(X(G, b, I)).
We then give a polynomial-time algorithm for the separation problem for
conv(X(G, b, I)), thus showing that the problem of optimizing a linear
function over the set X(G, b, I) is solvable in polynomial time.

1 Introduction

Given a bipartite graph G = (U, V ; E), a vector b = (be)e∈E , with the property
that b is half-integral, i.e. 2be ∈ Z, e ∈ E, and a set I ⊆ (U ∪ V ), we consider
the problem of characterizing the convex hull of all nonnegative x ∈ R

U∪V such
that

xi + xj ≥ bij for every ij ∈ E,
xi ∈ Z for every i ∈ I.

That is, given the edge-node incidence matrix A of a bipartite graph G, a par-
tition (I, L) of its column-set, and an half-integral vector b, we consider the
following mixed-integer set:

X(G, b, I) = {x : Ax ≥ b, x ≥ 0, xi integer for all i ∈ I}. (1)

In this paper we provide a formulation for the polyhedron conv(X(G, b, I)),
where a formulation for a polyhedron P is a description of P as the intersection
of a finite number of half-spaces. So it consists of a finite set of inequalities
Cx ≥ d such that P = {x : Cx ≥ d}.
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An extended formulation of P is a formulation for a polyhedron P ′ in a higher
dimensional space that includes the original space, so that P is the projection
of P ′ onto the original space.

A general technique to describe an extended formulation for the set of solu-
tions of a system Ax ≥ b, when A� is a network matrix and some of the variables
are restricted to be integer, was introduced in [1]. In Section 2 we derive such
an extended formulation for conv(X(G, b, I)), while in Section 3 we describe a
formulation in the original space by explicitly computing the projection of the
polyhedron defined by the extended formulation. Finally, in Section 4, we give a
polynomial-time algorithm to solve the separation problem for conv(X(G, b, I)).

1.1 The Main Result

Given a bipartite graph G = (U, V ; E), a partition (I, L) of U ∪ V , and an half-
integral vector b, we say that a path P of G is an I-path if at least one endnode
of P is in I, and no intermediate node of P is in I. We say that P is odd if P
has an odd number of edges e such that be = 1

2 mod 1. Whenever we have a
vector v with entries indexed by some set S, given a subset T of S we denote
v(T ) =

∑
i∈T vi. In this paper we show the following:

Theorem 1. The polyhedron conv(X(G, b, I)) is defined by the following in-
equalities:

xi + xj ≥ bij ij ∈ E, (2)
2x(V (P ) ∩ L) + x(V (P ) ∩ I) ≥ b(P ) + 1

2 P odd I-path, (3)
xi ≥ 0 i ∈ U ∪ V . (4)

Eisenbrand [4] conjectured that the inequalities in (2)-(4) are sufficient to char-
acterize conv(X(G, b, I)) when G is a path. Theorem 1 shows that this conjecture
holds in a quite more general setting (and it certainly cannot be extended be-
yond that). Preliminary results for the path case were obtained by Skutella [11]
and Eisenbrand [4].

1.2 First Chvátal Closure

The following observation allows us to describe X(G, b, I) in terms of a pure
integer set.

Observation 2. Let x̄ be a vertex of conv(X(G, b, I)). Then 2x̄ is integral.

Proof: If not, let U ′ and V ′ be the sets of nodes i in U and V , respectively, such
that 2x̄i is not integer. Then, for ε small enough, the vectors x̄ + εχU ′ − εχV ′

and x̄ − εχU ′
+ εχV ′

are both in conv(X(G, b, I)), where we denote by χS the
incidence vector of S for any S ⊆ U ∪ V . �

Let b′ = 2b, A′ be obtained form A by multiplying by 2 the columns correspond-
ing to nodes in I. By Observation 2, the linear transformation x′

i = xi, i ∈ I,
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x′
i = 2xi, i ∈ L, maps X(G, b, I) into {x′ : A′x′ ≥ b′, x′ ≥ 0, x′ integral}, which

is a pure integer set.
Let P = v1, . . . vn be an I-path. Notice that b(P ) = 1

2 mod 1 is equivalent to
b′(P ) odd. Then the inequality

∑

i∈V (P )

x′
i ≥

⌈
b′(P )

2

⌉

(5)

is a Gomory-Chvátal inequality of {x′ : A′x′ ≥ b′, x′ ≥ 0}. Indeed, assume
v1 ∈ I. If vn ∈ I, then (5) is obtained from

1
2
(2x′

v1
+x′

v2
≥ b′v1v2

)+
n−2∑

i=2

1
2
(x′

vi
+x′

vi+1
≥ b′vivi+1

)+
1
2
(x′

vn−1
+2x′

vn
≥ b′vn−1vn

)

by rounding up the right-hand-side. If xn /∈ I, then (5) is obtained from

1
2
(2x′

v1
+ x′

v2
≥ b′v1v2

) +
n−1∑

i=2

1
2
(x′

vi
+ x′

vi+1
≥ b′vivi+1

) +
1
2
(x′

vn
≥ 0)

by rounding up the right-hand-side.
Furthermore the inequalities in (5) correspond to the inequalities in (3).

Therefore Theorem 1 implies that the polyhedron defined by A′x′ ≥ b′, x′ ≥ 0
has Chvátal rank 1. In the case where G is a path with no intermediate node
in I, this last fact follows immediately from a theorem of Edmonds and Jonhn-
son [2,3], since in this case A′ satisfies the condition that the sum of the absolute
values of the entries of each column is at most 2.

1.3 The Motivation

A (general) mixed-integer set is a set of the form

{x | Ax ≥ b, xi integer i ∈ I} (6)

where I is a subset of the columns of A and b is a vector that may contain
fractional components.

In [1], it is shown that the problem of deciding if the above set is nonempty
is NP-complete, even if b is an half-integral vector and A is a network matrix.
(We refer the reader to [7] or [10] for definitions and results related to network
matrices and, more generally, totally unimodular matrices.)

However, it may be possible that, when A is the transpose of a network matrix,
the associated mixed-integer programming problem is polynomially solvable. In-
deed, let MIX2TU be a mixed-integer set of the form (6) when A� is a network
matrix.

An extended formulation of the polyhedron conv(MIX2TU ) was described
in [1]. The extended formulation involves an additional variable for each possible
fractional part taken by the variables at any vertex of conv(MIX2TU ). If this
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number is polynomial in the size of (A, b), then such a formulation is compact,
i.e. of polynomial size in the size of (A, b). Therefore the problem of optimizing
a linear function over MIX2TU can be efficiently solved in this case. However,
it seems to be rather difficult to compute the projection in the original x-space.
It follows from Observation 2 that if x̄ is a vertex of conv(X(G, b, I)), then x̄i −
�x̄i� ∈ {0, 1

2}. Therefore the extended formulation for conv(X(G, b, I)) (which
will be introduced in Section 2) is compact. The main contribution of this paper
is the explicit description of the projection of the polyhedron defined by this
extended formulation in the original x-space.

The mixed-integer set X(G, b, I) is related to certain mixed-integer sets that
arise in the context of production planning (see [9]). The case when G is a star
with center node in L and leaves in I has been studied by Pochet and Wolsey
in [8], where they gave a compact extended formulation for the convex hull of
feasible solutions. Günlük and Pochet [5] projected this formulation onto the
original space, thus showing that the family of mixing inequalities gives the
formulation in the x-space.

Miller and Wolsey [6] extended the results in [8] to general bipartite graphs,
with the restriction that the partition (I, L) coincides with the bipartition (U, V )
of the graph. Their result shows that the mixing inequalities associated with
every single star of G having center a node in L and leaf nodes all nodes in I
give a formulation for this case.

2 The Extended Formulation

We use here a modeling technique introduced by Pochet and Wolsey [8] and
extensively investigated in [1].
Observation 2 allows to express each variable xi , i ∈ L, as

xi = μi +
1
2
δi, μi ≥ 0, 0 ≤ δi ≤ 1, μi, δi integer. (7)

For now, we assume I = ∅, that is, L = (U ∪ V ).

Lemma 3. Let ij ∈ E, and suppose xi, xj , μi, μj , δi, δj satisfy (7).
If bij = 1

2 mod 1, xi, xj satisfy xi + xj ≥ bij if and only if

μi + μj ≥ �bij�
μi + δi + μj + δj ≥ �bij� .

(8)

If bij = 0 mod 1, xi, xj satisfy xi + xj ≥ bij if and only if

μi + δi + μj ≥ bij

μi + μj + δj ≥ bij .
(9)

Proof: Assume xi, xj , μi, μj , δi, δj satisfy (7). Then, if bij = 1
2 mod 1, constraint

xi + xj ≥ bij is satisfied if and only if μi + μj ≥ �bij� and δi + δj ≥ 1 whenever
μi+μj = �bij�. If bij = 0 mod 1, the constraint is satisfied if and only if μi+μj ≥
bij − 1 and δi = δj = 1 whenever μi + μj = bij − 1.
It is easy to see that these conditions are enforced by the above constraints. �
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Observation 4. Given ij ∈ E, the constraints (8) and (9) belong to the first
Chvátal closure of the polyhedron defined by

μi +
1
2
δi + μj +

1
2
δj ≥ bij

μi, μj ≥ 0
δi, δj ≤ 1
δi, δj ≥ 0

whenever bij = 1
2 mod 1 and bij = 0 mod 1, respectively.

By applying the unimodular transformation μ0
i = μi, μ1

i = μi+δi, the constraints
xi = μi + 1

2δi, μi ≥ 0, 0 ≤ δi ≤ 1 become

xi − 1
2
(μ0

i + μ1
i ) = 0 (10)

μ0
i ≥ 0

0 ≤ μ1
i − μ0

i ≤ 1 (11)

and constraints (8) and (9) become:

μ0
i + μ0

j ≥ �bij�
μ1

i + μ1
j ≥ �bij�

(12)

μ1
i + μ0

j ≥ bij

μ0
i + μ1

j ≥ bij
(13)

Theorem 5. The projection onto the space of the x variables of the polyhedron
Q defined on the space of the variables (x, μ0, μ1) by the inequalities

(10), (11) for every i ∈ U ∪ V,
(12) for every ij ∈ E s.t. bij = 1

2 mod 1
(13) for every ij ∈ E s.t. bij = 0 mod 1

is the polyhedron conv(X(G, b, ∅)).

Proof: Since the variable xi is determined by (10) for all i ∈ U ∪V , we only need
to show that the polyhedron defined by inequalities (11) for every i ∈ U ∪V , (12)
for every ij ∈ E s.t. bij = 1

2 mod 1, and (13) for every ij ∈ E s.t. bij = 0 mod 1,
is integral. Let Aμ be the constraint matrix of the above system. Since G is a
bipartite graph, then the matrix Ā, obtained by multiplying by −1 the columns
of Aμ relative to the variables μ0

i , μ
1
i , i ∈ V , has at most a 1 and at most a −1

in each row. Therefore Ā is the transpose of a network matrix, so Aμ is totally
unimodular (see [10]). Since the right-hand-sides of (11)-(13) are all integer, the
statement follows from the theorem of Hoffman and Kruskal. �

Observation 6. For any i ∈ U ∪ V , xi is integer valued if and only if δi = 0.
Therefore, for a given I ⊆ (U ∪V ), the polyhedron conv(X(G, b, I)) is the projec-
tion onto the space of the x variables of the face QI of Q defined by the equations
μ1

1 − μ0
i = 0, i ∈ I (which correspond to δi = 0, i ∈ I).
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3 The Formulation in the Original Space

In this section we prove Theorem 1 by projecting the polyhedron QI onto the
space of the x variables.

Let pi = μ0
i −μ1

i

2 . The μ0
i = xi +pi and μ1

i = xi −pi. The inequalities (10)-(13),
defining Q, become:

pi + pj ≥ �bij� − xi − xj , ij ∈ E s.t. bij = 1
2 mod 1,

−pi − pj ≥ �bij� − xi − xj , ij ∈ E s.t. bij = 1
2 mod 1,

pi − pj ≥ bij − xi − xj , ij ∈ E s.t. bij = 0 mod 1,
−pi + pj ≥ bij − xi − xj , ij ∈ E s.t. bij = 0 mod 1,

pi ≥ − 1
2 , i ∈ U ∪ V,

−pi ≥ 0, i ∈ U ∪ V,
pi ≥ −xi, i ∈ U ∪ V.

By Observation 6, conv(X(G, B, I)) is the projection onto the x-space of the
polyhedron defined by the above inequalities and by pi = 0 for every i ∈ I.

Associate multipliers to the above constraints as follows:

(u++
ij ) pi + pj ≥ �bij� − xi − xj

(u−−
ij ) −pi − pj ≥ �bij� − xi − xj

(u+−
ij ) pi − pj ≥ bij − xi − xj

(u−+
ij ) −pi + pj ≥ bij − xi − xj

(u
1
2
i ) pi ≥ − 1

2
(u0

i ) −pi ≥ 0
(ux

i ) pi ≥ −xi

(14)

Any valid inequality for conv(X(G, b, I)) has the form αux ≥ βu, where

αux =
∑

bij= 1
2 mod 1

(u++
ij + u−−

ij )(xi + xj) +

∑

bij=0 mod 1

(u+−
ij + u−+

ij )(xi + xj) +
∑

i∈U∪V

ux
i xi (15)

βu =
∑

bij= 1
2 mod 1

(u−−
ij �bij� + u++

ij �bij�) +

∑

bij=0 mod 1

(u+−
ij + u−+

ij )bij −
∑

i∈L

1
2
u

1
2
i (16)

for some nonnegative vector u = (u++
ij , u−−

ij , u+−
ij , u−+

ij , u
1
2
i , u0

i , u
x
i ) such that

uP = 0, where P is the column-submatrix of the above system (14) involv-
ing columns corresponding to variables pi, i ∈ L (see e.g. Theorem 4.10 in [7]).
For instance the inequality xi + xj ≥ bij , for ij ∈ E with bij = 1

2 mod 1, is
obtained by setting u++

ij = u−−
ij = 1

2 , and all other entries of u to be 0.
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We are interested in characterizing the nonnegative vectors u such that uP = 0
and αux ≥ βu is facet-defining for conv(X(G, b, I)), and such that the inequality
αux ≥ βu is not of the form xi + xj ≥ bij , for some ij ∈ E, or xi ≥ 0, for some
i ∈ U ∪V . From now on we will assume, w.l.o.g., that the entires of u are integer
and relatively prime.

We define an auxiliary graph Γu = (L ∪ {d}, F ), where d is a dummy node
not in U ∪ V , and F is defined as follows.

– For every edge ij ∈ E such that i, j ∈ L, there are u++
ij + u−−

ij + u+−
ij + u−+

ij

parallel edges between i and j in F , each edge corresponding to a multiplier
among u++

ij , u−−
ij , u+−

ij , u−+
ij .

– For each node i ∈ L, there are u
1
2
i + u0

i + ux
i +

∑
j∈I : ij∈E(u++

ij + u−−
ij +

u+−
ij + u−+

ij ) parallel edges between d and i in F , each edge corresponding

to a multiplier among u
1
2
i , u0

i , ux
i , or u++

ij , u−−
ij , u+−

ij , u−+
ij , for some j ∈ I.

We impose a bi-orientation ω on Γu, that is, to each edge e ∈ F , and each
endnode i of e that belongs to L, we associate the value ω(e, i) = tail if e cor-
responds to an inequality of (14) where pi has coefficient −1, while we associate
the value ω(e, i) = head if e corresponds to an inequality of (14) where pi has
coefficient +1. The dummy node d is neither a tail nor a head of any edge. Thus,
each edge of Γu can have one head and one tail, two heads, two tails, or, if d is
one of the two endnodes, only one head and no tail or only one tail and no head.

For each i ∈ L, we denote with δin
ω (i) the number of edges in F of which i is

a head, and with δout
w (i) the number of edges in F of which i is a tail.

We say that Γu is ω-eulerian if δin
ω (i) = δout

ω (i) for every i ∈ L.

Observation 7. Γu is ω-eulerian if and only if uP = 0.

We define a closed ω-eulerian walk in Γu as a closed-walk in Γu,

v0, e0, v1, e1, . . . , vk, ek, vk+1,

where v0 = vk+1, with the property that ω(eh−1, vh) = ω(eh, vh) for every h
such that vh is in L, h = 0, . . . , k, k + 1, where the indices are taken modulo k.
That is, if vh ∈ L, then vh is a head of eh−1 if and only if vh is a tail of eh.

Observation 8. Γu is ω-eulerian if and only if Γu is the disjoint union of closed
ω-eulerian walks. In particular, every node in L ∪ {d} has even degree in Γu.

Observe that, if v0, e0, . . . , ek, vk+1 is a closed ω-eulerian walk in Γu, then both
graphs Γ ′, Γ ′′ on L ∪ {d} with edge-sets F ′ = {e1, . . . , ek} and F ′′ = F \ F ′,
respectively, are ω-eulerian. Suppose F ′′ = ∅. Then there are nonnegative integer
vectors u′ and u′′, both different from zero, such that u′P = 0, u′′P = 0, Γ ′ = Γu′

and Γ ′′ = Γu′′ , and u = u′+u′′. By the fact that Γ ′ and Γ ′′ are ω-eulerian, and by
the structure of the inequalities in (14), the vectors (αu′ , βu′) and (αu′′ , βu′′) are
both non-zero. Furthermore αu = αu′ + αu′′ and βu = βu′ + βu′′ , contradicting
the fact that αux ≥ βu is facet-defining and the entries of u are relatively prime.

Hence we have shown the following.
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Observation 9. Every closed ω-eulerian walk of Γu traverses all the edges in
F . In particular, there exists a closed ω-eulerian walk v0, e0, . . . , ek, vk+1 of Γu

such that F = {eh | h = 1, . . . , k}.

Suppose d has positive degree in Γ . Then we may assume, w.l.o.g., that v0 =
vk+1 = d. Suppose d = vh for some h = 1, . . . , k. Then v0, e0, v1, . . . , eh−1vh is
a closed ω-eulerian walk, contradicting the previous observation. Hence we have
the following.

Observation 10. Node d has degree 0 or 2 in Γu.

Next we show the following.

Lemma 11. Every node in L ∪ {d} has degree 0 or 2 in Γu.

Proof: We have already shown d has degree 0 or 2 in Γu. If d has degree 2, we
assume d = v0 = vk+1, else v0 is arbitrarily chosen. If there is a node in L with
degree at least 4, then there exists distinct indices s, t ∈ {1, . . . , k} such that
vs = vt. We choose s and t such that t − s is positive and as small as possible.
Therefore C = vs, es, . . . , et−1, vt is a cycle of Γu containing only nodes in L.
Since G is a bipartite graph, C has even length, hence the edges in C can be
partitioned into two matchings M0, M1 of cardinality |C|/2. We will denote with
HH , TT , HT the sets of edges of F with, respectively, two heads, two tails, one
head and one tail.

If vs is the head of exactly one among es and et−1, then C is a closed ω-
eulerian walk, contradicting Observation 9. Hence vs is either a head of both es

and et−1 or a tail of both es and et−1. This shows that |C ∩TT | = |C ∩HH |±1.
Therefore there is an odd number of edges e in C such that be = 1

2 mod 1. By
symmetry, we may assume

∑
e∈M0

be ≥
∑

e∈M1
be + 1

2 . Then the inequality

2
∑

i∈V (C)

xi ≥
∑

e∈C

be +
1
2

(17)

is valid for conv(X(G, b, I)), since it is implied by the valid inequalities xi +xj ≥
bij , ij ∈ M0, because

2
∑

i∈V (C)

xi = 2
∑

ij∈M0

(xi +xj) ≥ 2
∑

ij∈M0

bij ≥
∑

e∈M0

be +
∑

e∈M1

be +
1
2

=
∑

e∈C

be +
1
2
.

Case 1: Node vs is a tail of both es and et−1.

Then |C ∩ TT | = |C ∩ HH | + 1, hence
∑

e∈C∩TT

�be� +
∑

e∈C∩HH

�be� +
∑

e∈C∩HT

be =
∑

e∈C

be +
1
2
. (18)

Let u′ be the vector obtained from u as follows
{

u′∗∗
ij = u∗∗

ij − 1 for every ij ∈ C
u′0

vs
= u0

vs
+ 2
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all other components of u′ and u being identical, where u∗∗
ij is the variable among

u++
ij , u−−

ij , u+−
ij , u−+

ij corresponding to edge ij of C.
Then one can easily see that Γu′ is the graph obtained from Γu by removing

the edges es, . . . , et, and adding two parallel edges vsd both with tail in vs, hence
Γu′ is ω-eulerian and u′P = 0. By (18)

βu′ = βu −
∑

e∈C

be − 1
2
,

while by construction
αux = αu′x + 2

∑

i∈V (C)

xi.

Thus αux ≥ βu can be obtained by taking the sum of αu′x ≥ βu′ and (17),
contradicting the assumption that αux ≥ βu is facet-defining.

Case 2: Node vs is a head of both es and et−1.

Then |C ∩ TT | = |C ∩ HH | − 1, hence

∑

e∈C∩TT

�be� +
∑

e∈C∩HH

�be� +
∑

e∈C∩HT

be =
∑

e∈C

be − 1
2
. (19)

Let u′ be the vector obtained from u as follows
{

u′∗∗
ij = u∗∗

ij − 1 for every ij ∈ C

u
′ 12
vs = u

1
2
vs + 2

all other components of u′ and u being identical.
Then one can easily see that Γu′ is the graph obtained from Γu by removing the
edges es, . . . , et, and adding two parallel edges vsd both with head in vs, hence
u′P = 0. By (19)

βu′ = βu −
∑

e∈C

be +
1
2

− 2
1
2
,

while by construction
αux = αu′x + 2

∑

i∈V (C)

xi.

Thus αux ≥ βu can be obtained by taking the sum of αu′x ≥ βu′ and (17),
contradicting the assumption that αux ≥ βu is facet-defining.

�
We are now ready to give the proof of the main theorem.

Proof of Theorem 1. We show that all facet-defining inequalities αux ≥ βu, where
u is nonnegative, integral, and with entries that are relatively prime, that are
not inequalities in (2) or (4), are of the form (3).
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First we show the following.
∑

ij∈E

u−−
ij >

∑

ij∈E

u++
ij +

∑

i∈U∪V

u
1
2
i (20)

In fact, we can write the inequality

αux ≥
∑

bij= 1
2 mod 1

(u−−
ij + u++

ij )bij +
∑

bij=0 mod 1

(u+−
ij + u−+

ij )bij

as nonnegative combination of inequalities of the form (2) or (4), therefore we
must have

βu >
∑

bij= 1
2 mod 1

(u−−
ij + u++

ij )bij +
∑

bij=0 mod 1

(u+−
ij + u−+

ij )bij .

Thus

0 < βu −
∑

bij= 1
2 mod 1

(u−−
ij + u++

ij )bij −
∑

bij=0 mod 1

(u+−
ij + u−+

ij )bij

=
1
2
(
∑

ij∈E

u−−
ij −

∑

ij∈E

u++
ij −

∑

i∈U∪V

u
1
2
i )

which proves (20).

By Lemma (11) and Observation (9), Γu consists of an induced cycle C and
isolated nodes, where every node in V (C) ∩ L is a head of exactly one edge and
a tail of exactly one edge.

If d is an isolated node, then each edge ij of C corresponds to a variable of
the form u∗∗

ij , and since the total number of heads in C equals the number of

tails, then
∑

ij∈E u−−
ij =

∑
ij∈E u++

ij and
∑

i∈U∪V u
1
2
i = 0, contradicting (20).

Thus we may assume that C = v0, e0, . . . , ek, vk+1 where d = v0 = vk+1.

Claim: The following are the only possible cases, up to symmetry.
1. Edges dv1, dvk of Γu correspond to variables ux

v1
and ux

vk
, respectively;

2. dv1 corresponds to variable u−−
wv1

or u−+
wv1

for some w ∈ I, and dvk corresponds
to ux

vk
;

3. dv1 corresponds to variables u−−
wv1

or u−+
wv1

for some w ∈ I, and dvk corresponds
to variable u−−

w′vk
or u−+

w′vk
for some w′ ∈ I.

Proof of claim. If v1 is a head of e0 and vk is a head of ek, then the number of
edges among e1, . . . , ek−1 with two tails is one plus the number of edges with two
heads. Since the former correspond to variables of type u−−

ij for some ij ∈ E,
and the latter correspond to to variables of type u++

ij for some ij ∈ E, then

by (20) dv1 does not correspond to variable u
1
2
v1 or to a variable u++

wv1
for any

w ∈ I, and dvk does not correspond to variable u
1
2
vk or to a variable u++

wvk
for any

w ∈ I, thus one of the above three cases holds.
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If v1 is a tail of e0 and vk is a head of ek, then the number of edges among
e1, . . . , ek−1 with two tails is equal the number of edges with two heads. By (20),
dv1 corresponds to variable u−−

wv1
for some w ∈ I, and dvk corresponds to either

ux
vk

or to a variable u−+
w′vk

for some w′ ∈ I, thus case 2 or 3 holds.
If v1 is a tail of e0 and vk is a tail of ek, then the number of edges among

e1, . . . , ek−1 with two tails is equal one minus the number of edges with two heads.
By (20), dv1 corresponds to variable u−−

wv1
for some w ∈ I, and dvk corresponds

to a variable u−−
w′vk

for some w′ ∈ I, thus case 3 holds. This completes the proof
of the claim.

Case 1: Edges dv1, dvk of Γu correspond to variables ux
v1

and ux
vk

, respectively.

In this case the path P = v1, e1, . . . , ek−1, vk of Γu is also a path of G containing
only nodes in L, and P contains an odd number of edges e such that be =
1
2 mod 1. The inequality αux ≥ βu is then 2x(V (P )) ≥ b(P ) + 1

2 . The edges
of P can be partitioned into two matchings M0 and M1, thus we may assume,
w.l.o.g.,

∑
e∈M0

be ≥
∑

e∈M1
be + 1

2 . Thus 2x(V (P )) ≥ 2
∑

ij∈M0
(xi + xj) ≥

2
∑

ij∈M0
bij ≥

∑
e∈M0

be +
∑

e∈M1
be + 1

2 = b(P ) + 1
2 , hence αux ≥ βu is not

facet-defining.

Case 2: dv1 corresponds to variable u−−
wv1

or u−+
wv1

for some w ∈ I, and dvk

corresponds to ux
vk

.

In this case, P = w, v1, e1, . . . , ek−1, vk is an odd I-path of G between w ∈ I and
vk ∈ L. The inequality αux ≥ βu is 2x(V (P )∩L)+ xw ≥ b(P )+ 1

2 , which is one
of the inequalities in (3).

Case 3: dv1 corresponds to variables u−−
wv1

or u−+
wv1

for some w ∈ I, and dvk

corresponds to variable u−−
w′vk

or u−+
w′vk

for some w′ ∈ I.

If w = w′, then the path P = w, v1, e1, . . . , ek−1, vk, w′ is an odd I-path of G
between w ∈ I and w′ ∈ I. The inequality αux ≥ βu is 2x(V (P )∩L)+xw +xw′ ≥
b(P ) + 1

2 , which is one of the inequalities in (3).
If w = w′, then we must have v1 = vk, since otherwise v1 would be either the

head or the tail of both edges of Γu incident to v1. Thus C′ = w, v1, . . . , vk, w
is a cycle of G. Since G is a bipartite graph, C′ has even length, hence the
edges in C′ can be partitioned into two matchings M0, M1 of cardinality |C′|/2.
Since C′ contains an odd number of edges e such that bw = 1

2 mod 1, then we
may assume, w.l.o.g.,

∑
e∈M0

be ≥
∑

e∈M1
be + 1

2 . The inequality αux ≥ βu is
2x(V (C′)) ≥ b(C′) + 1

2 . But 2x(V (C′)) = 2
∑

ij∈M0
(xi + xj) ≥ 2

∑
ij∈M0

bij ≥
∑

e∈M0
be +

∑
e∈M1

be + 1
2 = b(C′) + 1

2 , hence αux ≥ βu is not facet-defining.
�

4 Separation

Theorem 5 and Observation 6 imply that the problem of minimizing a linear func-
tion over the setX(G, b, I) is solvable in polynomial time, since it reduces to solving
a linear programming problem over the set of feasible points for (10)-(13).
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In this section we give a combinatorial polynomial-time algorithm for the sepa-
ration problem for the set conv(X(G, b, I)), thus giving an alternative proof that
the problem of optimizing a linear function over such polyhedron, and thus over
X(G, b, I), is polynomial.

Clearly, given a nonnegative vector x∗, we can check in polynomial-time whether
x∗ satisfies (2) for every edge. Thus, by Theorem 1, we only need to describe a
polynomial-time algorithm that, given a nonnegative vector x∗ satisfying (2), ei-
ther returns an inequality of type (3) violated by x∗, or proves that none exists.

For every ij ∈ E, let s∗ij = x∗
i + x∗

j − bij . Since x∗ satisfies (2), then s∗e is
nonnegative for every e ∈ E. Let P = v1, . . . vn be an odd I-path.

Claim. The vector x∗ satisfies 2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) ≥ b(P ) + 1
2 if and

only if s∗(P ) + x∗({v1, vn} ∩ L) ≥ 1
2 .

Indeed, assume v1 ∈ I. If vn ∈ I then

n−1∑

i=1

s∗vivi+1
=

n−1∑

i=1

(x∗
vi

+ x∗
vi+1

− bvivi+1)

gives the equality s∗(P ) = 2x∗(V (P )∩L)+x∗(V (P )∩I)−b(P ), hence 2x∗(V (P )∩
L) + x∗(V (P ) ∩ I) ≥ b(P ) + 1

2 if and only if s∗(P ) ≥ 1
2 .

If vn /∈ I, then

n−1∑

i=1

s∗vivi+1
+ x∗

vn
=

n−1∑

i=1

(x∗
vi

+ x∗
vi+1

− bvivi+1) + x∗
vn

gives the equality s∗(P ) + x∗
vn

= 2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) − b(P ), hence
2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) ≥ b(P ) + 1

2 if and only if s∗(P ) + x∗
vn

≥ 1
2 .

This completes the proof of the Claim.
Therefore, if we assign length s∗e to every e ∈ E, we need to give an algorithm

that, for any two nodes r, t such that r ∈ I, either determines that the shortest
odd I-path between r and t (if any) has length at least 1

2 − x∗({t}∩ L), or returns
an odd I-path P for which 2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) < b(P ) + 1

2 .
Observe that any walk W between r and t that contains an odd number of edges

e such that be = 1
2 mod 1 either contains a sub-path P that is an odd I-path or it

contains a cycle C that contains an odd number of edges e such that be = 1
2 mod 1.

In the former case, either both endnodes of P are in I, or t is the only endnode of
P in L. Hence, if s∗(W ) < 1

2 − x∗({t} ∩ L), then also s∗(P ) < 1
2 − x∗({t} ∩ L),

hence 2x∗(V (P ) ∩ L) + x∗(V (P ) ∩ I) < b(P ) + 1
2 . In the second case, since G is

bipartite, the edges of C can be partitioned into two matchings M0 and M1 such
that b(M0) ≥ b(M1) + 1

2 . Thus s∗(C) =
∑

ij∈C(x∗
i + x∗

j − bij) = 2x∗(V (C)) −
b(C) ≥ 2(x∗(V (C)) − b(M0)) + 1

2 = 2
∑

ij∈M0
(x∗

i + x∗
j − bij) + 1

2 ≥ 1
2 , hence

s∗(W ) ≥ 1
2 .

Thus we only need to find, for every pair r, t ∈ U ∪ V with r ∈ I, the shortest
walk W between r and t, w.r.t. the distance s∗, among all such walks containing
an odd number of edges e such that be = 1

2 mod 1. If, for a given choice of r, t,
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s(W ) < 1
2−x∗({t}∩L), then by the above argumentwe can find in polynomial time

a sub-pathP ofW such thatP is an odd I-path and2x∗(V (P )∩L)+x∗(V (P )∩I) <
b(P ) + 1

2 , otherwise we can conclude that x∗ ∈ conv(X(G, b, I)).
To conclude, we only need to show a polynomial-time algorithm that, given an

undirected graph Γ with nonnegative lengths on the edges 	e, e ∈ E(Γ ), a subset
F ⊆ E(Γ ), and a pair of nodes r, t ∈ V (Γ ), determines the walk W of minimum
length between r and t such that |E(W ) ∩ F | is odd, or determines that no such
walk exists. The latter problem can be solved in polynomial time. Since, as far as
we know, this fact is folklore, we briefly describe an algorithm.

We construct a new graph Γ ′ as follows. For every node v ∈ V (Γ ), there is a
pair of nodes v, v′ in V (Γ ′). For every edge uv ∈ E(Γ ), E(Γ ′) contains the edges
uv′ and u′v if uv ∈ F , and the edges uv and u′v′ if uv /∈ F , each with length 	uv.
One can verify that a walk W between r and t with an odd number of edges in F
exists in Γ if and only if there exists a walk of the same length between r and t′ in
Γ ′. Hence we only need to find a shortest path between r and t′ in Γ ′, if any exists,
and output the corresponding walk in Γ .
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